UV photon splits either b or c and causes downconversion in either $X_1^{(2)}$ or $X_2^{(2)}$

Let's consider upper route

Let's consider lower route

These two "parts" interfere
\[I_s = \cos^2 \varphi \]

We see interference between upper and lower path at \(D_s \) even if \(D_l \) is not there.

\(D_l \) cannot tell if photon came from \(x^{(1)} \) or \(x^{(2)} \).

Now we block beam \(E \) with a beam block. \(D_l \) can now tell which path (lower) and interference at \(D_s \) disappears.

Note: Block 'B' is not in either path.

Note: \(D_l \) does not actually need to be there! Only potential.
\[|\psi_\pi\rangle = \frac{1}{\sqrt{2}} \left[|1\rangle_\nu |0\rangle_c + e^{i\phi} |0\rangle_\nu |1\rangle_c \right] \]

\[|\psi_\Pi\rangle = \frac{1}{\sqrt{2}} \left[|1\rangle_\nu |0\rangle_c + e^{i\phi} |1\rangle_\nu |1\rangle_c \right] \]

\[\hat{D}_{C_1} |1\rangle_\nu |0\rangle_c |0\rangle_e = \gamma |0\rangle_\nu |0\rangle_c |1\rangle_d |1\rangle_e \]

\[\hat{D}_{C_2} |0\rangle_\nu |1\rangle_c |0\rangle_h |0\rangle_k = \gamma |0\rangle_\nu |0\rangle_c |1\rangle_h |1\rangle_k \]

Note: If mode e and k are aligned, they are the same mode!

\[\hat{D}_{C_2} \hat{D}_{C_1} |\psi_\Pi\rangle = |\psi_\Pi\rangle \]

\[\hat{\Sigma}_\phi |1\rangle_h = |1\rangle_h \quad \text{and} \quad \hat{\Sigma}_\phi |1\rangle_h = e^{i\phi} |1\rangle_h \]

\[|\psi_\Pi\rangle = \left[|1\rangle_\nu |1\rangle_\phi |0\rangle_c + e^{i\phi} |0\rangle_\nu |0\rangle_c |1\rangle_\phi |1\rangle_c \right] \]
Now: \[\hat{B}_c \left| 11 \right>_m \left| 0 \right>_e \] = \frac{1}{\sqrt{2}} \left[\left| 11 \right>_m \left| 0 \right>_e + i \left| 10 \right>_m \left| 11 \right>_e \right] \]

\[\hat{B}_c \left| 10 \right>_m \left| 11 \right>_e \] = \frac{1}{\sqrt{2}} \left[\left| 10 \right>_m \left| 11 \right>_e + i \left| 11 \right>_m \left| 10 \right>_e \right] \]

\[\psi_{\psi} = \hat{B}_c \psi \]
\[= \frac{1}{\sqrt{2}} \left[\left| 11 \right>_m \left| 0 \right>_e \right] \left(\left| 11 \right>_m \left| 0 \right>_e + i \left| 10 \right>_m \left| 11 \right>_e \right) \]
\[+ i e^{i \phi} \left| 10 \right>_m \left| 11 \right>_e \right] \left(\left| 10 \right>_m \left| 11 \right>_e + i \left| 11 \right>_m \left| 10 \right>_e \right) \]

And no beam block \(B \)

Now if aligned \(1 \left| e \right. \) and \(1 \left| k \right. \)

the same mode and \(\left| 11 \right>_m \left| 0 \right>_e \left| k \right. = \left| 10 \right>_m \left| 11 \right>_e \equiv \left| 11 \right>_e \)

That is you can not tell even in principle is photon \(1 \left| k \right. \) was created in \(B_c \, C_{1012} \)

Hence it factorizes!

\[\psi = \frac{e^{i \phi}}{\sqrt{2}} \left| 11 \right>_e \left[\left(\frac{e^{-i \phi} - e^{i \phi}}{2} \right) \left| 11 \right>_m \left| 0 \right>_e \right. \]
\[+ 2 i \left(\frac{e^{-i \phi} + e^{i \phi}}{2} \right) \left| 10 \right>_m \left| 11 \right>_e \left. \right] \]

\[= ye^{i \phi/2} \left| 11 \right>_e \left[\left(-e^{-i \phi/2} \left| 11 \right>_m \left| 0 \right>_e \right. \right. \]
\[+ 2 i \left(e^{-i \phi/2} + e^{i \phi/2} \right) \left| 10 \right>_m \left| 11 \right>_e \left. \right] \]

So what is \(P_{\text{coin}} (1e, 1k) \)? Detact 1 at \(D_s \) and 1 at \(D_i \)

\[P_{\text{coin}} (1e, 1k) = \frac{1}{N} \left| \left\langle \psi \left| a_1^\dagger a_1^\dagger \left| \psi \right. \right. \right. \right| \]
\[= \frac{\lambda^2}{\sqrt{2}} \left(1 + \cos \Phi \right) \]
So what is
\[P(\text{le}) \text{ independent/ignorance/trace } D_i? \]

\[
P_s(\text{le}) = \left< \psi | a^\dagger \text{e} | \psi \right> = \sqrt{\frac{\pi^2}{2}} \left(1 + \cos \phi \right)
\]

same! \(D_i \) does not even need to be there!

Okay we move Beam Block B into place.

Now \(|11\text{e}10\text{e} \neq |10\text{e}11\text{e} \) modes are distinguishable! They no longer factorize.

\[
|\psi\rangle_s = \frac{\sqrt{2}}{2} \left[|11\text{e}10\text{e}\rangle + e^{i\phi} |0\text{e}11\text{e}\rangle + e^{i\phi} |10\text{e}11\text{e}\rangle + e^{i\phi} |11\text{e}10\text{e}\rangle \right]
\]

Note \(|11\text{e}10\text{e}\rangle \perp \text{ to } |10\text{e}11\text{e}\rangle \)

\[
P_{\text{com}}(\text{le}1\text{le}) = \frac{1}{2} \left< \psi | a^\dagger \text{e} a^\dagger \text{le} a^\dagger \text{le} | \psi \right>
\]

= \[\frac{\pi^2}{4} \quad \text{Interference vanishes} \]

\(D_i \) can now tell which path \(1\text{le} \) took.

Even better.
\[P_s(1_e) = \frac{1}{2} \langle \psi | a^+ a_1 | \psi \rangle \frac{1}{\sqrt{2}} \]

\[= \frac{\gamma}{4} + \frac{\gamma}{4} = \frac{\gamma}{2} \]

Still no interference

D\textsubscript{i} does not have to even be there!

The fact that which-path information is available in environment destroys interference even if nobody looks!

The really crazy paper

Replace D\textsubscript{i} with a black hole

Event horizon (in some theories) acts as quantum eraser and erases which-path.

Interference comes back! E.W.M

Interferometer can be used as a black hole detector! (Hockney & Yurtsever)